封面論文:粘土礦物基材料用于超靈敏表面增強拉曼散射檢測技術
Analytical Methods, 2023, 15, 1001 - 1015
Access PDF reprints here
Manuscript ID: D2AY01262F
Password: 111412 (this link will expire in 60 days)
Analytical Methods, 2023, DOI: 10.1039/D2AY01262F
環境污染已經是導致動植物疾病和非正常死亡的主要環境原因之一。尤其是具有高毒性和低生物降解性有機染料的廣泛使用,已經對人類生產、生活造成了嚴重的危害。例如,常使用的亞甲基藍(Methylene Blue,MB)染料,當其在血漿中殘留量超過1.6×10-6 mol/L時,會造成嚴重的中樞神經系統疾病。液/氣相色譜-質譜雖然可對該類物質進行檢測,但是使用這些儀器時測式分析條件要求較復雜,且樣品測試前需復雜的預處理,增加了時間和經濟成本;另外,對于極低濃度或含量的待檢測物,這些儀器分析在靈敏度和檢測范圍上也較有限,限制了此類方法的進一步發展和降低了分析或診斷的潛力。
拉曼光譜無需復雜的預處理,即可對樣品進行快速檢測。但是拉曼散射的信號極弱(每1010個入射光子才能產生1個拉曼光子),導致拉曼檢測靈敏度低。表面增強拉曼散射(Surface-Enhanced Raman Scattering,SERS)可有效的解決上述問題。SERS對拉曼信號的增強主要來源于金屬(主要為金、銀)納米結構產生的局域表面等離子共振(Localized Surface Plasmon Resonance,LSPR)效應,其增強因子理論上可達~1010-1011。因此,制備納米結構(如:形貌、粒徑)可調控的材料至關重要。人工合成的鋰皂石(Hectorite,Hct)是由兩層Si-O-Si四面體和一層Mg-O-Li八面體構成的層狀粘土礦物,具有各向異性的電荷分布:層板帶負電荷,層板邊緣帶正電荷(取決于體系pH)。Hct可作為模板劑誘導金屬納米粒子的生長,調控納米材料的LSPR效應,改善SERS信號。
近期,浙江工業大學化學工程學院、青陽非金屬礦研究院等機構的研究人員合作,利用自主研發生產的鋰皂石為主要原材料,開發采用液相還原法制備了粒徑約為24 nm的均勻球形Ag@Hct納米材料,該納米材料表現出強SERS增強效果。該研究團隊通過在Hct分散液中引入烷基鏈頭部和尾部均帶負電荷的十二烷基硫酸鈉(Sodium Dodecyl Sulfate,SDS),使其同時與邊緣帶正電荷的Hct NPs和Ag+結合,形成“Hct-SDS-Ag+”的橋接結構,有效的改善了Hct NPs和Ag+的分散,制備了粒子分布均勻、粒徑分布窄的球形Ag@Hct納米材料。通過對比添加/未添加SDS制備的Ag@Hct納米材料的TEM和EDS-mapping圖,揭示了SDS在制備粒子分散均勻的Ag@Hct納米材料方面的重要作用。進一步使用Zeta電位、紅外和拉曼光譜對各步反應物進行了表征,表明了“Hct-SDS-Ag+”橋接結構的形成。通過對使用不同類型的表面活性劑(如:陽離子表面活性劑、陰離子表面活性劑和非離子型表面活性劑)制備的Ag@Hct的紫外-可見吸收光譜和粒徑分布進行分析,表明了SDS以“電荷橋”形式連接了Hct和Ag+。進一步調節橋接位點的數量和反應條件,調控了Ag@Hct納米材料的光學信號和粒徑分布。Ag@Hct納米材料對MB水溶液和污水中MB的SERS檢測限分別為10-12 mol/L和10-11 mol/L。同時,Ag@Hct納米材料對孔雀石綠(MG)和結晶紫(CV)環境污染物也顯示出良好的SERS增強效果。該工作日前以 封面論文(見上面的 封面圖片) —— 題為“Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection”—— 發表在英國化學會(RSC)分析化學主要刊物《Analytical Methods》上。
該研究采用液相還原法制備了具有均勻納米結構的Ag@Hct材料,制備工藝簡單,重復性好,具有工業化制備粒徑為~24 nm球形Ag@Hct納米材料的潛力。該納米材料具有良好的SERS活性,對MB水溶液的SERS檢測限可低至10-12 mol/L,對污水中MB的檢測限為10-11 mol/L,具有在實際應用中使用Ag@Hct納米材料檢測MB的潛力。同時,Ag@Hct納米材料對可作為標記物的MG和CV分子(包括MB)也具有良好的增強效果,賦予了使用Ag@Hct作為基底材料實現對金屬離子(如:Hg2+)和microRNA等物質高靈敏SERS檢測的潛力。
The article can be cited as:
Analytical Methods, 2023, DOI: 10.1039/D2AY01262F
Click here to download and share the Advance Article PDF. Subscription access to the journal is required to view this PDF
Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection - Analytical Methods (RSC Publishing)
Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection†
Abstract
The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+ via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10−12 M. The detection limit of MB in sewage was 10−11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.
Author affiliations